Searching for the Neural Correlates of Code
Michael E. Hansen

Indiana University

1 Specific Aims

Research into the psychological foundations of computer programming has been on-going since the
1950’s [4]. Great strides have been made, from the simple act of equating complex software with
basic structural features of the code [15] [12] to the use of complex models of text understanding
that posit multiple levels of representation in the programmer’s head [7]. Many behavioral studies
of have been conducted on programmers in pursuit of an empirically-grounded cognitive model
for program understanding [6]. To date, however, the neural correlates of program understanding
remain a mystery.

It has been shown that programming experts, like experts in other domains (e.g., chess, physics,
electronic circuitry), owe much of their expertise to the concordance of their memory chunks with
the functional units of the domain [20]. Thus, expert programmers are able to efficiently encode
the problem at hand and see the “bigger picture” behind the code whereas novices rely heavily
on surface-level features of code to infer its meaning. The particular form of these chunks (or
schemas) is still being debated, as is the way they are activated in response to a given task. The
lack of conclusive behavioral results has given way to a plethora of theories that seek to explain
the underlying mechanisms of program understanding.

One specific debate in the program comprehension literature centers around whether program-
mers represent chunks visually, semantically, or both. Based on the fact that programmers can
recall code statements verbatim, Shneiderman and Mayer have proposed that programmers retain
only the meanings of code statements (i.e., their semantics), and not their syntax [19]. In contrast,
Parnin believes that the syntax of code statements is also retained during program comprehension
via abstracted perceptual patterns [17]. According to text comprehension theories of programming,
the semantic representation of code statements is linguistic (i.e., propositional) in nature [23]. Thus,
we can potentially differentiate between chunk representations (semantic or syntactic + semantic)
by associating them with well-known functional regions of the brain (language or visual working
memory + language).

We propose an fMRI experiment that will be used to gather evidence for one of the preceding
chunk representations (semantic or syntactic + semantic). We will require participants to copy
snippets of code verbatim (called the code copy task) while in an MRI scanner under one of two
conditions: (1) code is presented as written, and (2) code is presented with the lines randomly
permuted. This is somewhat similar to early code recall tasks |20, [§], but is based more heavily on
a chessboard copying task from early research with chess experts [2]. To our knowledege, this will
be the first time that this kind of task has been performed with programmers in an MRI scanner.
For this experiment, our specific aims are:

1. Between more and less experienced programmers, do we see a difference in activation within
linguistic and visual working memory areas?

2. When code is scrambled by line, does this difference effectively disappear?



2 Significance

This experiment is a significant step forward in the study of program comprehension and expert
memory. The production of software is one of the most complex activities that humans engage in
every day, yet virtually nothing is known about its neurological basis. Studying the underpinnings
of program comprehension is especially interesting, given that it involves visual, spatial, linguistic,
and mathematical processes. Thus, the field is inherently inter-disciplinary.

Beyond a purely scientific interest, this experiment will also help to inform education in Com-
puter Science. In a 2007 paper [14], Kramer looks back on 30 years of teaching and asks:

Why is it that some software engineers and computer scientists are able to produce clear,
elegant designs and programs, while others cannot? Is it purely a matter of intelligence?
Is it possible to improve the skills and abilities of those less able through further education
and training?

Answering these questions will require knowing how software engineers and computer scientists
actually represent and construct programs. Due to contradictory behavioral results, the field of
program comprehension needs studies such as this in order to provide clear constraints on potential
models. This experiment is meant as a first step towards a comprehensive model of program
comprehension that will span the perceptual and conceptual levels of code understanding.

3 Innovation

The experiment described here is innovative, since it combines methodologies from the fields of
program comprehension and expert memory in order to create a new cross-disciplinary experimental
task (the code copy task). Behavioral program comprehension studies to date have mostly
involved program recall, fill-in-the-blank, or verbalization while problem solving. We present a
simplified task that is modelled after Chase and Simon’s classic experiment with chess masters [2].

Our simple code copy task will allow us to isolate the underlying representation of memory
chunks in programmers by only requiring that they hold code in memory (and not manipulate it).
Unlike a standard code recall task, the programmer is not trying to memorize an entire program at
once and is not limited in the number of times they may edit their answer (except by a time limit
— see Section . We believe the code copy task itself is innovative, acting as a bridge between
Computer Science and the empirical brain sciences.

In addition to being cross-disciplinary, this is (to our knowledge) the first time that a program
comprehension task will be performed in an MRI scanner. Previous work in program comprehension
has focused exclusively on behavioral results, with a great deal of hypothesizing about the under-
lying brain mechanisms [I7]. Our experiment employs state-of-the-art fMRI scanning techniques
common in Psychology and Cognitive Science to help drive knowledge and research in Computer
Science.



4 Approach

4.1 Background

Our experimental design closely mirrors that of Chase and Simon (1973) [2]. In their chessboard
copy task, Chase and Simon had players copy the positions of every piece from one chessboard to
another as quickly as possible. The two boards were placed such that they could not simultaneously
be in view, ensuring that the player would need to quickly memorize as much as they could before
moving over to the other board. In order to estimate the chunk capacity of short-term memory,
Chase and Simon operationally defined a single chunk as a sequence of chess pieces placed by a
player within two seconds of each other. In other words, it was assumed that two pieces placed
in rapid succession (< 2s) were both present in the same memory chunk. With this definition, it
appeared that experts and novices both shared the same short-term memory capacity (about seven
chunks), but that experts stored more information per chunk than novices (i.e., experts placed
more pieces per chunk on average).

In a later study of chess players (1996), deGroot and Gobet attempted to correct for a potential
issue with the Chase and Simon study: players are physically only able to hold a small number
of pieces in their hands at once. Given Chase and Simon’s operational definition of chunk (pieces
placed within 2s of each other), it was possible that experts were storing more than a (literal)
handful of pieces in a single chunk; it might simply have taken more than two seconds to place
them on the board. Using a computerized version of the chessboard copy task, deGroot and Gobet
showed that Chase and Simon had overestimated the short-term memory capacity of their players.
The new estimate was around four chunks for both experts and novices (compared to about seven
chunks previously). Further research has lowered the estimated capacity of short-term memory
even more, down to as little as two chunks [9]!

Given the limitations of short-term memory, deGroot and Gobet suggested that chess experts’
performance is the result of having a vast library of information-rich chunks available in long-term
memory. These chunks contain perceptual information about particular chess piece configurations,
and are linked together to form what’s called a discrimination network. A similar picture for
computer programmers has been proposed by Gobet and Oliver, with code patterns playing the role
of chess piece configurations [10]. For our experiment, we accept Gobet and Olver’s hypothesis and
assume that a programmer’s code chunks are present in working memory when they are mentally
representing code. Assuming this will allow us to use relative brain activation in particular areas
to determine the neural representation of these code chunks.

4.2 Participants

We will recruit healthy, monolingual (English-speaking), right-handed participants who may or may
not have any programming experience. All participants must be able to touch type on a standard
QWERTY keyboard, which will be present in the scanner. We define a participant’s “programming
experience” as the number of years that they have worked with at least one programming language.
Following Barfield et al. [I], we will divide participants into the following expertise groups: (1)



naive participants, who have no programming experience, (2) novices, who have less than a year
of experience, (3) intermediates, who have less than three years of experience, and (4) experts,
who have more than three years of experience. The number of participants in each expertise group
should be roughly the same in order to allow for equal comparisons.

Participants who have prior programming experience must have worked with a programming
language which is present in our bank of sample programs (described in Section . If code
chunks do contain syntactic (visual) information, then it is important that the right programming
language be used. For our pilot study, these languages will include Java, Python, and C++.
Participants without any programming experience must be native English speakers to ensure that
the copy task can be done quickly enough (most programming languages include English keywords
and identifiers). We expect naive participants to perform much of the copy task through verbal
rehearsal.

4.3 Methods

Our experimental setup will have participants lying in the MRI scanner with a computer screen
and standard QWERTY keyboard. All keystrokes will be recorded and timestamped to allow for
registration between the MRI and behavioral data streams. Participants will be continually scanned
throughout each trial (defined below).

4.3.1 The Code Copy Task

We define the code copy task as follows:

1. For each trial (10 total, 5 trials per condition, randomly ordered), participants are presented
with a screen of code (code screen) that they must copy verbatim into an empty text window
(copy screen).

2. A hotkey is provided to switch between the code screen and copy screen such that only one
can be active at a time (the clipboard will be disabled to avoid copy-paste).

3. Participants are informed that there will be a delay when switching from the code screen to
the copy screen, during which the screen will be blank (there will not be a delay going from
the copy screen to the code screen).

4. Participants are presented with a program drawn at random from our code bank (details
below). In the normal condition, this program will be presented as written. In the scram-
bled condition, the program’s lines will be randomly permuted (retaining indentation — see

Section |4.4.1]).

5. Once they believe that the program has been successfully copied, the participant will press
a predefined key to continue to the next trial (they will be told to keep trying if there are
mistakes — see Section for concerns with this approach).



6. Participants will have up to 5 minutes per trial with an inter-trial interval of 15 seconds (a
blank screen will be shown). If the 5 minute time limit is reached without a successful copy,
the trial will automatically end and the next trial will begin (after the inter-trial delay).

From the description above of the code copy task, there are at least two important variables
to consider: the set of programs to copy and the switching delay between the code and copy
screens. The set of programs must fit several criteria: (1) they must be readable (i.e., formatted
properly, not obfuscated), (2) they cannot be too simple or too complex (i.e., not a collection of
simple print statements or the solution to a very obscure problem), and (3) they cannot be canonical
(i.e., a well-known example from a book). These criteria are meant to ensure that experts are able
to chunk some, but not all, of the code that they view under the normal condition. Under the
scrambled condition, the expertise effect is expected to all but disappear (see next section).

Our program bank will be built using snippets of code from Google Code [3], a popular online
code repository. This repository contains code from a wide variety of open source projects using
different programming languages. For all languages in our pilot study, code snippets will be gathered
by hand from the top five most popular projects on Google Code for that language. Hand-selecting
snippets will ensure two things: (1) that each code snippet matches the criteria above, and (2)
that each code snippet can be reasonably copied in under five minutes by a naive participant.
A study of average computer users has found that transcription speeds are around 33 words per
minute [I3], meaning that snippets should be limited to around 160 words (probably less, given
that code contains unusual characters for non-programmers). It will be necessary for us to judge
snippets for inclusion based on how quickly we believe they can be copied (not too quickly for
experts and not too slowly for naive participants).

A switching delay is imposed each time participants switch from the code screen to the copy
screen. This delay plays the same role as the physical separation of chessboards in Chase and
Simon’s study [2]. By ensuring that the two chessboards could not simultaneously be in view,
the authors forced participants to utilize their working memories during the copy task. Following
deGroot and Gobet, we will use a delay of 5 seconds for each switch [5].

4.3.2 Expected Results

Naive and novices programmers have been observed to closely follow the surface-level (textual)
features of code [16] [6]. Thus, it is expected that they will encode the stimuli in both conditions
(normal and scrambled) linguistically instead of visually. Given this, we should see activation in
the left frontal and parietal regions as well as the bilateral caudate nucleus [I§]. Experts, on the
other hand, are known to possess chunks for common code patterns and to use these chunks during
recall tasks [20]. If their chunks include syntactic and indentation information (i.e., are visual in
nature), then we should expect more activation for experts in brain areas associated with visual
working memory. Specifically, we expect to see more activation in ventrolateral and dorsal prefrontal
cortex (relative to the less experienced programmers) in the normal condition [22]. Given Gobet’s
hypothesis that expertise largely involves the accumulation of more chunks [10], we hypothesize



that the amount of activation in visual working memory areas will roughly follow programming
expertise (again, in the normal condition only). It is unknown whether the increase in activation
for visual working memory in experts will also mean a decrease in activation for linguistic areas
relative to novices.

In a review of the behavioral program comprehension literature, Gobet and Oliver (2002) noted
that the expertise effect in program recall (where participants must recall a program verbatim)
decreases or virtually disappears when the code is scrambled [10]. The extent to which the effect
decreases depends on whether the scrambling is done with modules or individual lines (or both).
We expect that scrambling the code by individual lines will force experts to process the stimuli
in a manner similar to novices and naive participants (i.e. linguistically). Thus, we hypothesize
that activation in linguistic and visual working memory areas will be similar for naive/novice
participants in both conditions and similar between experts and naive/novice participants in the
scrambled condition.

4.4 Other Methodological Considerations
4.4.1 Code Indentation and Highlighting

The indentation and highlighting of the presented code are important to consider, since they are
almost always present when editing code. If chunks are represented visually, then these features
could be critical for proper retrieval of the correct chunk (Parnin suggests that both indentation
and syntax highlighting help produce a unique signature [I7]). One study has found that syntax
highlighting does not affect overall visual search performance, but it can enhance searches for
particular kinds of targets [I1]. To avoid confounding effects from any one highlighting scheme, our
code will be presented as simple black text on a white background with only language keywords
highlighted.

Indentation will be retained for both normal and scrambled code, since it is often either man-
dated by the language (e.g., Python), or automatically inserted by the programming environment.
For some languages, however, indentation is optional (e.g., Java, C++). This poses a potential
problem for our experiment, since individual participants may use very different indentation styles
in their own code (and thus have very different chunks). If this appears to be a problem in our
pilot study, we plan to reformat all applicable code snippets using a standard indentation style,
such as K&R 1TBS [21], to cover as broad a range of participants as possible.

4.4.2 Lateralization

We do not rule out the possibility that hemispherical lateralization may play a significant role in our
results. While the left hemisphere has been traditionally associated with linguistic processing, the
right hemisphere appears crucial for “holistic” understanding of complex linguistic phenomena [24].
Thus, instead of just finding a simple visual versus linguistic effect for programming expertise, we
may also find a strong lateralization effect between experts and novices in linguistic regions (because
experts are better at seeing the “bigger picture” behind the code).



4.4.3 Estimating Chunk Capacity

We do not attempt to estimate the capacity of short-term memory in this study. It would be
possible to do so with the data we plan to gather, provided an operational definition of a code
chunk is agreed upon. In Chase and Simon’s chessboard copy task, they defined a chunk using the
latency between piece placements. For the code copy task, it is not clear if the latency between
key presses could play the same role. Because all keystrokes will be recorded and timestamped, it
will be possible to perform a post-hoc analysis to estimate short-term memory capacity. Given the
large differences in capacity estimates between Chase et al. and deGroot et al. for the chessboard
copy task, it might be useful to have an estimate from a different task.

4.4.4 Verbatim Copying

The requirement that code be copied verbatim may be too strict, and cause some participants to
get frustrated (especially those with little programming experience). It may be necessary to include
some notion of “close enough” in the computer process that checks for copy correctness, such as
ignoring small misspellings in variable names. We will investigate such matters further if it becomes
necessary after a small pilot study.



References

1]

W. Barfield. Expert-novice differences for software: Implications for problem-solving and
knowledge acquisition. Behaviour & Information Technology, 5(1):15-29, 1986.

William G. Chase and Herbert A. Simon. Perception in chess. Cognitive Psychology, 4(1):55
- 81, 1973.

Google Code. http://code.google.com, Nov 2011.

Bill Curtis. Fifteen years of psychology in software engineering: Individual differences and
cognitive science. Proceedings of the 7th international conference on Software engineering,
pages 97-106, 03 1984.

A. de Groot, F. Gobet, and R. Jongman. Perception and memory in chess: Studies in the
heuristics of the professional eye. Van Gorcum & Co, Assen, Netherlands, 1996.

Frangoise Détienne. Software design—cognitive aspects. Springer-Verlag New York, Inc., New
York, NY, USA, 2002.

Frangoise Détienne. What model(s) for program understanding? In Conference on Using
Complex Information Systems - UCIS’96, Poitiers, France, September 1996.

Franoise Dtienne and Elliot Soloway. An empirically-derived control structure for the process
of program understanding. International Journal of Man-Machine Studies, 33(3):323 — 342,
1990.

F. Gobet and G. Clarkson. Chunks in expert memory: Evidence for the magical number four
or is it two? Memory, 12(6):732-747, 2004.

F. Gobet and I. Oliver. A simulation of memory for computer programs. Department of
Psychology, ESRC' Centre for Research in Development, Instruction and Training, University
of Nottingham (UK), Technical report, 74, 2002.

T. Hakala, P. Nykyri, and J. Sajaniemi. An experiment on the effects of program code high-
lighting on visual search for local patterns. 2008.

M.H. Halstead. Elements of Software Science (Operating and programming systems series).
Elsevier Science Ltd, 1977.

C.M. Karat, C. Halverson, D. Horn, and J. Karat. Patterns of entry and correction in large
vocabulary continuous speech recognition systems. In Proceedings of the SIGCHI conference
on Human factors in computing systems: the CHI is the limit, pages 568-575. ACM, 1999.

J. Kramer. Is abstraction the key to computing? Communications of the ACM, 50(4):36—42,
2007.


http://code.google.com

[15]

[16]

[17]

18]

[19]

[20]

[21]

22]

[23]

[24]

T.J. McCabe. A complexity measure. IEEFE Transactions on Software Engineering, 2:308-320,
1976.

J.F. Pane and B.A. Myers. The influence of the psychology of programming on a language
design: Project status report. 2006.

Chris Parnin. A cognitive neuroscience perspective on memory for programming tasks. In
In In the Proceedings of the 22nd Annual Meeting of the Psychology of Programming Interest
Group (PPIG), 2010.

Diana Rodriguez-Moreno and Joy Hirsch. The dynamics of deductive reasoning: An fmri
investigation. Neuropsychologia, 47(4):949 — 961, 2009.

B. Shneiderman and R. Mayer. Syntactic/semantic interactions in programmer behavior: A
model and experimental results. International Journal of Parallel Programming, 8(3):219-238,
1979.

E. Soloway and K. Ehrlich. Empirical studies of programming knowledge. IEEE Trans.
Software Eng., 10, 1984.

Indent Style. http://en.wikipedia.org/wiki/Indent_style#Variant:_1TBS, Nov 2011.

L.G. Ungerleider, S.M. Courtney, and J.V. Haxby. A neural system for human visual working
memory. Proceedings of the National Academy of Sciences, 95(3):883, 1998.

Teun A. van Dijk and W. Kintsch. Strategies of discourse comprehension. New York: Academic
Press, 1983.

W. Wapner, S. Hamby, and H. Gardner. The role of the right hemisphere in the apprehension
of complex linguistic materials. Brain and Language, 14(1):15-33, 1981.


http://en.wikipedia.org/wiki/Indent_style#Variant:_1TBS

	Specific Aims
	Significance
	Innovation
	Approach
	Background
	Participants
	Methods
	The Code Copy Task
	Expected Results

	Other Methodological Considerations
	Code Indentation and Highlighting
	Lateralization
	Estimating Chunk Capacity
	Verbatim Copying



