Intro to Bayesian Analysis

Michael Hansen

Topics

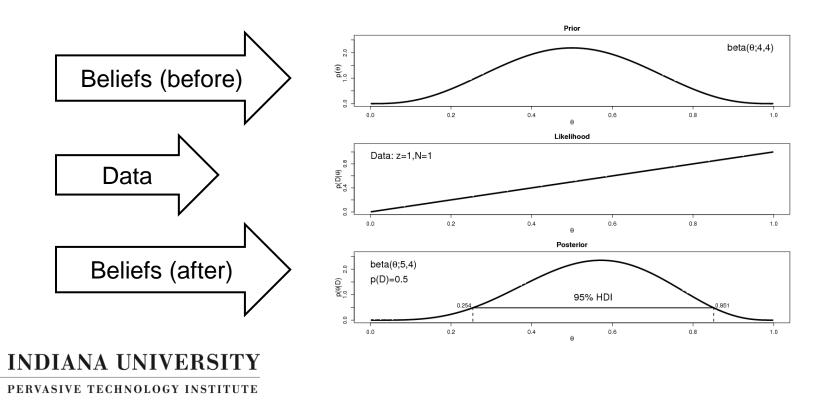
Part 1

- Probability from a Bayesian Perspective
- Differences with NHST
- Theory of Bayesian Statistics
- Part 2
 - Gibbs sampling, MCMC
 - Examples R and BUGS

Part 1 - The Theory

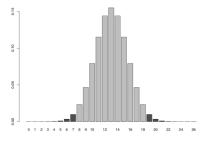
Probability

- Measure of uncertainty
- Subjective beliefs or long-run relative frequencies?
 - Math is the same probability distributions over sample space
- Bayesian analysis transforms beliefs



Null Hypothesis Significance Testing

- Goal of inference: determine significance of a parameter value
 - Calculate p value, reject if p < 0.05 (5% chance of false alarm)
 - Problem p value calculation depends on experimenter intentions
 - Was sample size set by design or by chance?
 - Edge cases exist where this can change significance
- Confidence Intervals
 - Range where a parameter would be significant
 - Still depends on p value, so...
 - No information about degree of uncertainty in a parameter value
- Prior knowledge
 - Difficult or impossible to use in standard tests

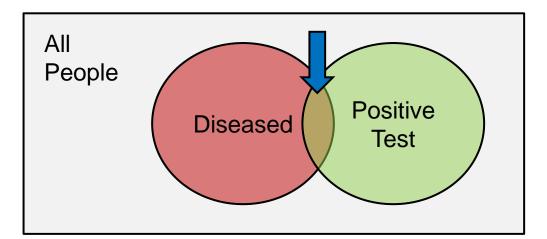


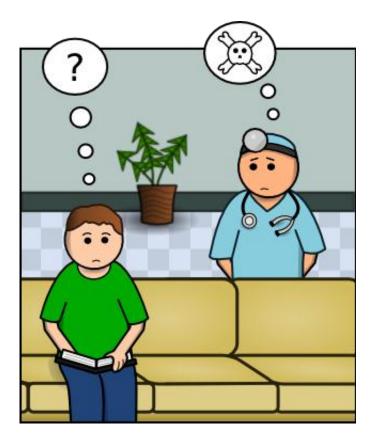
Advantages of Bayesian Analysis

- Prior knowledge is naturally represented
 - Prior must be acceptable to a skeptical scientific audience
 - Easy to swap out priors and re-run the analysis
- Uncertainty is front-and-center
 - Parameters have degrees of certainty rather than significant or not significant
 - Judgment is left to the user (decision theory, HDI, ROPE)
- Model comparison is simple
 - Highly complex models are naturally penalized (diffuse posterior)
- No corrections needed for multiple comparisons
 - Multi-dimensional posterior can be freely sliced

Deriving Bayes' Rule (1/2)

- A blood test for a disease has a 1% false alarm rate
- Typically, 1 in 100,000 have the disease
- You receive a positive test
 - Do you have the disease?

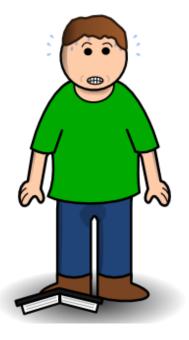




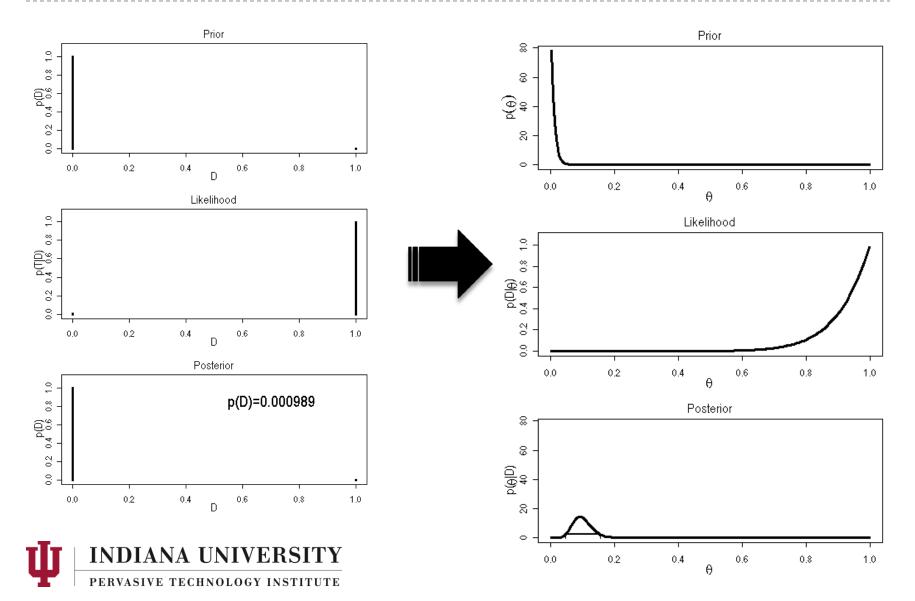
Deriving Bayes' Rule (2/2)

P(disease|test) = P(test|disease) * P(disease)

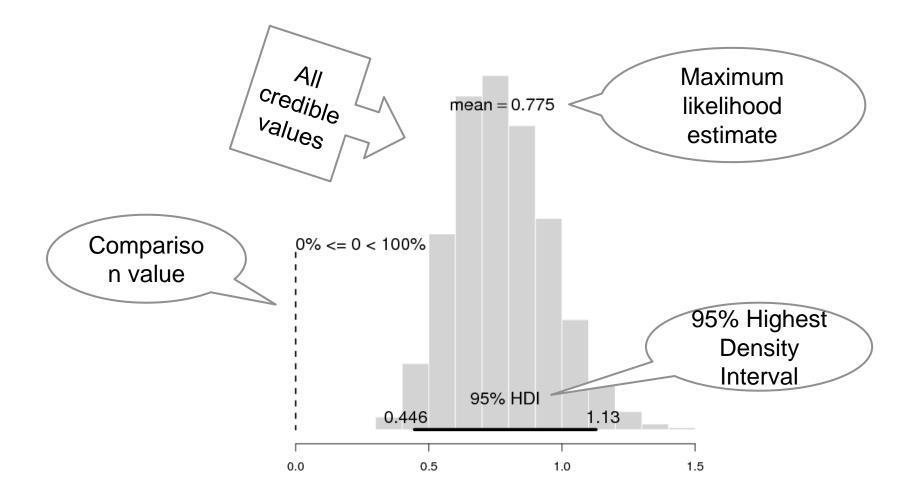
- Do you have the disease?
 - (0.99 x 0.00001) / (0.99 x 0.00001 + 0.01 x 0.9999) = 0.00099
 - Less than 1 in 1,000 chance
- What if you re-did the test?
 - Positive result Less than 1 in 10
 - Negative result Less than 1 in 100,000
 - Probability changes with prior knowledge



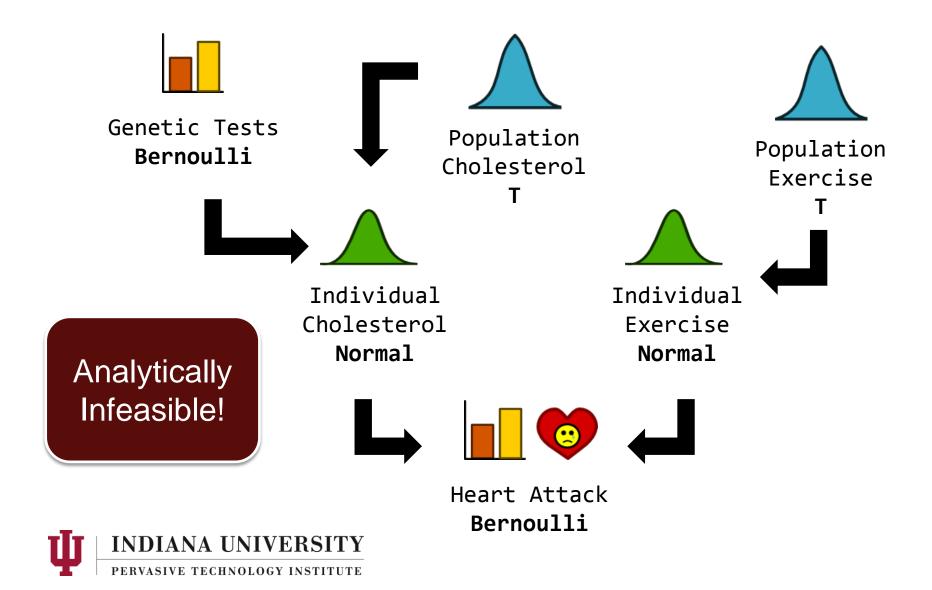
Making Things Fuzzy



Interpreting Bayesian Results



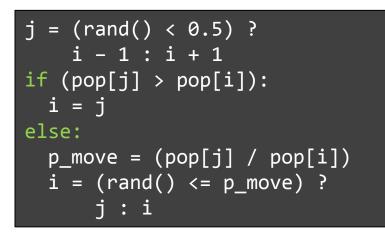
Hierarchical Modeling with Parameters

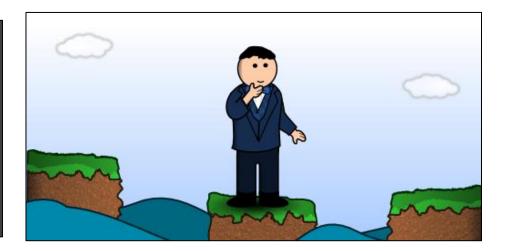


Part 2 - The Real World

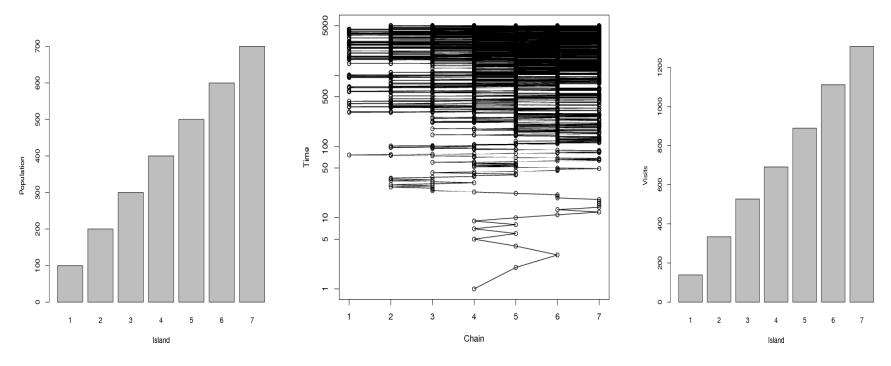
Markov Chain Monte Carlo Method

- Metropolis Algorithm
 - Chains explore the posterior via random walk (converges in the limit)
 - Proposal distribution controls how jumps are accepted/rejected
- Gibbs Sampling
 - Conjoint parameter distribution for proposal distribution
 - Used by BUGS software





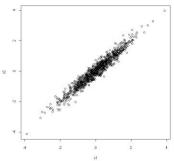
Metropolis Algorithm



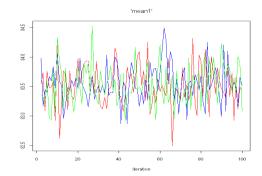
PERVASIVE TECHNOLOGY INSTITUTE

Metropolis and Gibbs "gotchas"

- Metropolis algorithm
 - Requires tuning of proposal distribution
 - "Clumpier" trajectories due to rejected jumps
- Gibbs Sampling



- Can get stuck when parameters are highly correlated
- Must be able to derive conditional probabilities of each parameter on the other and generate samples
- Both
 - Chains should be checked for autocorrelation (thinning)
 - May take time to find bulk of posterior (burn-in)



Example – Parameter Recovery

R Code

BUGS Code

```
# Generate parameters
mean1 = runif(1, 0, 100)
mean2 = runif(1, 0, 100)
prec1 = runif(1, 0, 1)
prec2 = runif(1, 0, 1)
```



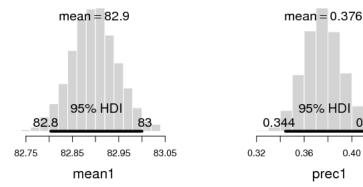
```
model {
 # Likelihood
  for (i in 1:numY1) {
    y1[i] ~ dnorm(mean1, prec1)
  }
  for (i in 1:numY2) {
    y2[i] ~ dnorm(mean2, prec2)
  }
  # Priors
  mean1 ~ dunif(0, 100)
  mean2 ~ dunif(0, 100)
```

```
prec1 ~ dunif(0, 1)
prec2 ~ dunif(0, 1)
```

Example – Parameter Recovery (dense data)

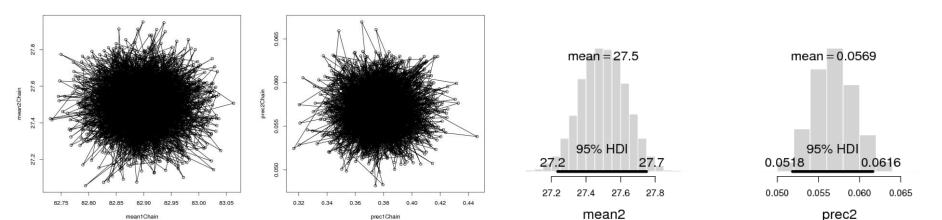
Real Values (1000 samples)

- mean1: 82.89689
- prec1: 0.3512249
- mean2: 27.37247
- prec2: 0.05239301



0.41

0.44



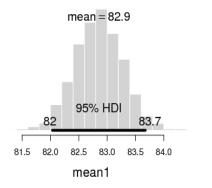
Parameter Chains

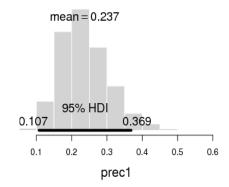
Burn-in: 100 steps Steps per chain: 1000 Thinning: 2

Example – Parameter Recovery (sparse data)

Real Values (25 samples)

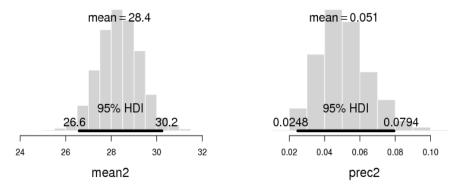
- mean1: 82.89689
- prec1: 0.3512249
- mean2: 27.37247
- prec2: 0.05239301





HDI Width Increase

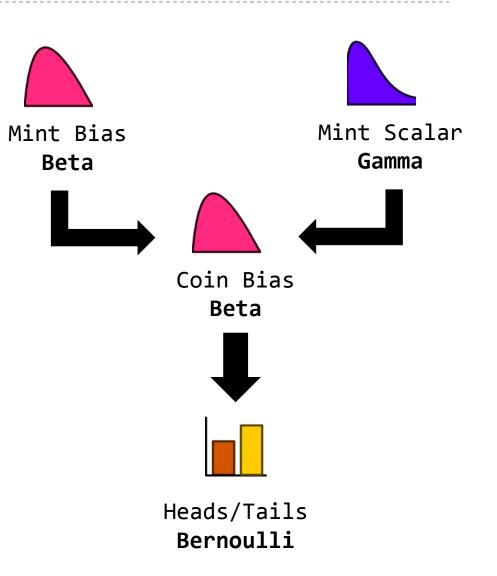
- mean1: 8.5x
- prec1: 3.97x
- mean2: 7.2x
- prec2: 5.57x



Burn-in: 100 steps Steps per chain: 1000 Thinning: 2

Mutually Informing Data

```
model {
  for (i in 1:numFlips) {
    f[i] ~ dbern(cb[c[i]])
  }
  for (i in 1:numCoins) {
    cb[i] ~ dbeta(cbA, cbB)
  }
  # Hyper-priors
  cbA <- cbMn * cbScl + 1</pre>
  cbB <- (1 - cbMn) * cbScl + 1
  cbMn ~ dbeta(mintA, mintB)
  cbScl ~ dgamma(mintS, mintR)
  # Priors...
```

Example – Therapeutic Touch

- Can TT practitioners detect "energy field" better than chance?
- 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, mean = 0.434mean = 20.8 94.7% <= 0.5 < 5.3% 95% HDI 95% HDI1 0.356 0.515 3.18 43.6 0.1 0.2 Group Mean 0.5 0.6 Ô. 80 20 4'0 60 Group Scale mean = 0.325 mean = 0.561 96.6% <= 0.5 < 3.4% 28.5% <= 0.5 < 71.5% 95% HDI 95% HDI 0.514 0.366 0.148 0.749 0.1 0.5 0.3 0.4 0.8 0.9 0.4 0.6 0.2 0.3 0.5 0.6 0.7 Indv. Mean 28 Indv. Mean 1

Questions?

