
Intro to Bayesian Analysis 

Michael Hansen 



Topics 

 Part 1 

 Probability from a Bayesian Perspective 

 Differences with NHST 

 Theory of Bayesian Statistics 

 Part 2 

 Gibbs sampling, MCMC 

 Examples – R and BUGS 



Part 1 - The Theory 



Probability 

 Measure of uncertainty 

 Subjective beliefs or long-run relative frequencies? 

 Math is the same – probability distributions over sample space 

 Bayesian analysis transforms beliefs 

Beliefs (before) 

Data 

Beliefs (after) 



Null Hypothesis Significance Testing 

 Goal of inference: determine significance of a parameter 

value 

 Calculate p value, reject if p < 0.05 (5% chance of false alarm) 

 Problem – p value calculation depends on experimenter intentions 

 Was sample size set by design or by chance? 

 Edge cases exist where this can change significance 

 Confidence Intervals 

 Range where a parameter would be significant 

 Still depends on p value, so… 

 No information about degree of uncertainty in a parameter value 

 Prior knowledge 

 Difficult or impossible to use in standard tests 



Advantages of Bayesian Analysis 

 Prior knowledge is naturally represented 

 Prior must be acceptable to a skeptical scientific audience 

 Easy to swap out priors and re-run the analysis 

 Uncertainty is front-and-center 

 Parameters have degrees of certainty rather than significant or not 

significant 

 Judgment is left to the user (decision theory, HDI, ROPE) 

 Model comparison is simple 

 Highly complex models are naturally penalized (diffuse posterior) 

 No corrections needed for multiple comparisons 

 Multi-dimensional posterior can be freely sliced 



Deriving Bayes’ Rule (1/2) 

 A blood test for a disease 

has a 1% false alarm rate 

 Typically, 1 in 100,000 have 

the disease 

 You receive a positive test 

 Do you have the disease? 

Diseased 
Positive 

Test 

All 

People 



Deriving Bayes’ Rule (2/2) 

 P(disease|test) = P(test|disease) * P(disease) 

 

 

 Do you have the disease? 
 (0.99 x 0.00001) / (0.99 x 0.00001 + 0.01 x 0.9999) = 0.00099 

 Less than 1 in 1,000 chance 

 

 What if you re-did the test? 

 Positive result –  Less than 1 in 10 

 Negative result – Less than 1 in 100,000 

 Probability changes with prior knowledge 

normalized 



Making Things Fuzzy 



Interpreting Bayesian Results 
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Hierarchical Modeling with Parameters 

Heart Attack 
Bernoulli 

Individual 
Cholesterol 
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Genetic Tests 
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Exercise 
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Population 
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T 

Population 
Exercise 

T 

Analytically 

Infeasible! 



Part 2 - The Real World 



Markov Chain Monte Carlo Method 

 Metropolis Algorithm 

 Chains explore the posterior via random walk (converges in the 

limit) 

 Proposal distribution controls how jumps are accepted/rejected 

 Gibbs Sampling 

 Conjoint parameter distribution for proposal distribution 

 Used by BUGS software 

 
j = (rand() < 0.5) ? 
    i – 1 : i + 1 
if (pop[j] > pop[i]): 
  i = j 
else: 
  p_move = (pop[j] / pop[i]) 
  i = (rand() <= p_move) ?      
      j : i 



Metropolis Algorithm 



Metropolis and Gibbs “gotchas” 

 Metropolis algorithm 

 Requires tuning of proposal distribution 

 “Clumpier” trajectories due to rejected jumps 

 Gibbs Sampling 

 Can get stuck when parameters are highly correlated 

 Must be able to derive conditional probabilities of each parameter 

on the other and generate samples 

 Both 

 Chains should be checked for autocorrelation (thinning) 

 May take time to find bulk of posterior (burn-in) 



Example – Parameter Recovery 

# Generate parameters 
mean1 = runif(1, 0, 100) 
mean2 = runif(1, 0, 100) 
prec1 = runif(1, 0, 1) 
prec2 = runif(1, 0, 1) 
 
# Generate data 
y1 = rnorm(s, mean1, 
       1/sqrt(prec1)) 
 
y2 = rnorm(s, mean2, 
       1/sqrt(prec2)) 

model { 
  # Likelihood 
  for (i in 1:numY1) { 
    y1[i] ~ dnorm(mean1, prec1) 
  } 
 
  for (i in 1:numY2) { 
    y2[i] ~ dnorm(mean2, prec2) 
  } 
 
  # Priors 
  mean1 ~ dunif(0, 100) 
  mean2 ~ dunif(0, 100) 
  prec1 ~ dunif(0, 1) 
  prec2 ~ dunif(0, 1) 
} 

R Code BUGS Code 



Example – Parameter Recovery (dense data) 

Burn-in: 100 steps 

Steps per chain: 1000 

Thinning: 2 

Real Values (1000 samples) 
 
• mean1: 82.89689 
• prec1: 0.3512249 
• mean2: 27.37247 
• prec2: 0.05239301 

Parameter Chains 



Example – Parameter Recovery (sparse data) 

Burn-in: 100 steps 

Steps per chain: 1000 

Thinning: 2 

Real Values (25 samples) 
 
• mean1: 82.89689 
• prec1: 0.3512249 
• mean2: 27.37247 
• prec2: 0.05239301 

HDI Width Increase 
 
• mean1: 8.5x 
• prec1: 3.97x 
• mean2: 7.2x 
• prec2: 5.57x 



Mutually Informing Data 

Heads/Tails 
Bernoulli 

Coin Bias 
Beta 

Mint Bias 
Beta 

Mint Scalar 
Gamma 

model { 
  for (i in 1:numFlips) { 
    f[i] ~ dbern(cb[c[i]]) 
  } 
 
  for (i in 1:numCoins) { 
    cb[i] ~ dbeta(cbA, cbB) 
  } 
 
  # Hyper-priors  
  cbA <- cbMn * cbScl + 1 
  cbB <- (1 – cbMn) * cbScl + 1 
  cbMn ~ dbeta(mintA, mintB) 
  cbScl ~ dgamma(mintS, mintR) 
 
  # Priors... 
} 



Example – Therapeutic Touch 

 Can TT practitioners detect “energy field” better than 

chance? 

 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 
5, 5, 6, 6, 7, 7, 7, 8 

 



Questions? 


